r - Get accuracy for a boosted multinomial model -
i trying find accuracy of boosted model. code such:
wine.boost = gbm(as.factor(wine) ~ alcohol+hue, data = italiantrain, distribution = "multinomial", n.trees = 5000 , interaction.depth = 2) wine.boost.testpredict = predict(wine.boost, newdata=italiantest, n.trees =5000, type = "response") confusionmatrix(wine.boost.testpredict, italiantrain$wine)
when try following error:
error in confusionmatrix.default(wine.boost.trainpredict, italiantest$wine): data cannot have more levels reference
i'm not sure correct or i'm doing wrong. suggestions?
the best way comfortable data not @ it:
> iris.boost = gbm(species ~ ., data = iris, + distribution = "multinomial", n.trees = 5000 , interaction.depth = 2) > > iris.boost.testpredict = predict(iris.boost, newdata=iris[1:3, 1:4], + n.trees =5000, type = "response") > iris.boost.testpredict , , 5000 setosa versicolor virginica [1,] 0.9987619 0.0011808413 5.722106e-05 [2,] 0.9994021 0.0004801001 1.177551e-04 [3,] 0.9993529 0.0005547632 9.236662e-05
you have convert basic gbm
output factor (or use train
, you).
Comments
Post a Comment